Kenneth Cukier: Ted Talks: Big Data is Better Data

Self-driving cars were just the start. What’s the future of big data-driven technology and design? In a thrilling science talk, Kenneth Cukier looks at what’s next for machine learning — and human knowledge.


So what is the value of big data? Well, think about it. You have more information. You can do things that you couldn’t do before. One of the most impressive areas where this concept is taking place is in the area of machine learning. Machine learning is a branch of artificial intelligence, which itself is a branch of computer science. The general idea is that instead of instructing a computer what do do, we are going to simply throw data at the problem and tell the computer to figure it out for itself. And it will help you understand it by seeing its origins. In the 1950s, a computer scientist at IBM named Arthur Samuel liked to play checkers, so he wrote a computer program so he could play against the computer. He played. He won. He played. He won. He played. He won, because the computer only knew what a legal move was. Arthur Samuel knew something else. Arthur Samuel knew strategy. So he wrote a small sub-program alongside it operating in the background, and all it did was score the probability that a given board configuration would likely lead to a winning board versus a losing board after every move. He plays the computer. He wins. He plays the computer. He wins. He plays the computer. He wins. And then Arthur Samuel leaves the computer to play itself. It plays itself. It collects more data. It collects more data. It increases the accuracy of its prediction. And then Arthur Samuel goes back to the computer and he plays it, and he loses, and he plays it, and he loses, and he plays it, and he loses, and Arthur Samuel has created a machine that surpasses his ability in a task that he taught it.


There is another problem: Big data is going to steal our jobs. Big data and algorithms are going to challenge white collar, professional knowledge work in the 21st century in the same way that factory automation and the assembly line challenged blue collar labor in the 20th century. Think about a lab technician who is looking through a microscope at a cancer biopsy and determining whether it’s cancerous or not. The person went to university. The person buys property. He or she votes. He or she is a stakeholder in society. And that person’s job, as well as an entire fleet of professionals like that person, is going to find that their jobs are radically changed or actually completely eliminated. Now, we like to think that technology creates jobs over a period of time after a short, temporary period of dislocation, and that is true for the frame of reference with which we all live, the Industrial Revolution, because that’s precisely what happened. But we forget something in that analysis: There are some categories of jobs that simply get eliminated and never come back. The Industrial Revolution wasn’t very good if you were a horse. So we’re going to need to be careful and take big data and adjust it for our needs, our very human needs. We have to be the master of this technology, not its servant. We are just at the outset of the big data era, and honestly, we are not very good at handling all the data that we can now collect. It’s not just a problem for the National Security Agency. Businesses collect lots of data, and they misuse it too, and we need to get better at this, and this will take time. It’s a little bit like the challenge that was faced by primitive man and fire. This is a tool, but this is a tool that, unless we’re careful, will burn us.