Are the Constants of Physics Constant?

So far, they seem to be—but nobody really understands why

.. Born was after a unifying theory to relate all the fundamental forces of nature. He also wanted a theory that would explain where these constants came from. Something, he said, to “explain the existence of the heavy, and light elementary particles and their definite mass quotient 1840.”
.. But the weird thing about such constants is that there is no theory to explain their existence. They are universal and they appear to be unchanging. So is the case with the masses of protons and electrons. But time and time again, they are validated through observation and experiment, not theory.
.. Paul Dirac, wondered in a Nature paper whether the constants were indeed constant if one were to look at the entire history of the cosmos. Measurements on earth are useful but it is a tiny blue dot in the vast universe. What Dirac asked decades ago is what physicists continue to ask today. Is it a constant everywhere in the universe? Why is it a constant? How constant?
.. The mass ratio, they write, varies less than 0.0005 percent, not enough to call it a change. This is based on telescope observations going as far as 12.4 billion years back in time when the universe was only 10 percent of its current age.
.. Even a small change of a few percent in the value of the ratio would mean a different universe. A smaller mass ratio could mean a wimpier proton, and possibly a weaker pull for the electrons orbiting the nucleus, leading to different kind of matter.
.. No theory in physics can explain the constant mass ratio, the steadfast shepherd of science. It just is, *shrug*.
.. The experimental search for a varying constant will likely continue as long as there is no theory to back its existence.